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Abstract

The performance of an explicit algebraic stress model is assessed in predict-
ing the turbulent flow and forced heat transfer in straight ducts, with square,
rectangular, trapezoidal and triangular cross sections, under fully developed con-
ditions over a range of Reynolds numbers. [so-thermal conditions are imposed
on the duct walls, and the turbulent heat fluzves are modeled by gradient-diffusion
type models. At high Reynolds numbers (2107 ). wall functions are used for the
velocity and temperature fields, while at low Reynolds numbers, damping func-
tions are introduced into the models. Hydraulic parameters such as friction
factor and Nusselt number are well predicted. even when damping functions are
used, and the present formulation imposes minimal demand on the number of
grid points without any convergence or stability problems. Comparison between
the models is presented in terms of the hydraulic parameters, friction factor and
Nusselt number, as well as in terms of the secondary flow patierns occurring
within the duets,

1. Introduction

The performance of a turbulence model in predicting the velocity and temperature
fields of relevant industrial problems has become increasingly important during the
last few vears. This improved predictive performance is also true for turbulent duct
flow, which occurs frequently in many industrial applications, such as compact heat
exchangers, gas turbine cooling systems, cooling channels in combustion chambers.
nuclear reactors. and others. The cross section of these ducts might be both orthog-
onal (square or rectangular) and nonorthogonal (such as trapezoidal). in which the
generated flow is extremely complex. Sometimes, the ducts are also wavy or corru-
gated in the streamwise direction and might be manufactured with ribs to achieve
faster transition to turbulence.

Several fundamental studies of turbulent flow in square and rectangular ducts exist
in the literature. Direct numerical simulations have been carried out for a square duct
by Gavrilakis (1992) and Huser and Biringen (1993) with Reynolds numbers of 4410
and = 10*, respectively. Large eddy simulations for square and rectangular ducts have
been reported by Madabhushi and Vanka (1991) at a Reynolds number of 5300, and
by Su and Friedrich (1994) and Meyer and Rehme (1994) at Reynolds numbers up
to 4.9 x 10%. Nevertheless, limitations on computational power and memory make it



almost impossible to directly solve for the turbulent flow field in practical engineering
duct flows using a direct numerical simulation (DNS) approach for the foreseeable
future. Large eddy simulations (LES) may be more tractable; although to date. their
use has not been widespread. Thus, the prediction of the flow and heat transfer
characteristics in engineering duct flows still requires a Reynolds-averaged approach
using suitable turbulent closure models for both the velocity and temperature fields.

[t is known that secondary motions take place in the corner of noncircular straight
ducts in the plane perpendicular to the streamwise flow direction. These motions are
turbulence-induced and are commonly referred to as motions of Prandtl’s second kind.
Such motions are of importance since they redistribute the kinetic energy, influence
the streamwise velocity. and thereby affect the wall shear stress and heat transfer.
The effect of secondary motions of Prandtl’s second kind on the wall shear stresses
and heat fluxes increases considerably when the ducts are corrugated. A linear eddy
viscosity model (LEVM) does not have the ability to predict secondary flows, but
still it is one of the most popular models among engineers owing to its simplicity
and overall good performance properties. Previously, Rokni and Sundén (1996, 1998)
emploved a nonlinear eddy viscosity model (NLEVM) for predicting the flow and heat
fluxes in straight and wavy ducts with trapezoidal cross sections. This level of closure
accounts for the Reynolds stress anisotropy and is then able to predict the secondary
flows within the relative cost of a two-equation formulation.

In the study reported here. the earlier work of Rokni and Sundén (1996, 1998)
is extended to arbitrary ducts by using an explicit algebraic stress model (EASM).
The method is applied to square. rectangular. trapezoidal. and triangular ducts with
iso-thermal wall conditions using gradient-diffusion type heat flux models. The heat
flux models are a simple eddy diffusivity model (SED). a generalized gradient dif-
fusion hyvpothesis (GGDH) model, and a model extracted from the empirical WET
hyvpothesis (Launder 1988). The FEASM representation is used for both low- and
high-Revnolds numbers without introducing any damping functions into the tensor
representation for the Revnolds stresses; however. at low Reynolds numbers, damping
functions are introduced into the isotropic eddy viscosity and the heat flux models.
At high Revnolds numbers (210%), wall functions are used for both the velocity and
temperature fields. Jayatilleke's P-function (1969) is not used because it is shown to
be a main source of error if wall functions are used for (numerically) predicting the
friction factor in ducts.

One difficulty associated with turbulent convective heat transfer and fluid flow in
ducts is obtaining satisfactory results for both friction factor and Nwu-number, if wall
functions are used. Usually, either friction factor or Nu-number can be predicted
satisfactorily, but not both of them. Another problem with using wall functions in
complex geometry (duct) flows is the variability of the minimum y* value along the
grid line adjacent to the boundary. (See, e.g., Rokni and Sundén, 1996.) Uniformity
can be achieved by setting the grid points adjacent to the wall in certain positions;
however, while this placement is easily done in orthogonal geometries, it is extremely
difficult in nonorthogonal geometries. Alternatively, low-Reynolds number versions of
the models usually cannot be extended to Reynolds numbers 210? based on hydraulic
diameter (see e.g., Rokni and Sunden, 1999b). Therefore. it is desirable to develop a



model that not only predicts these hydraulic parameters satisfactorily, but that also
can be used for a very wide range of Reynolds numbers with less demand on the
number of grid points and without any convergence problem.

2. Mean and Turbulent Equations

A Reynolds-averaged Navier-Stokes (RANS) approach is used to predict the fully
developed turbulent flow and heat transfer in the three-dimensional duct flow. The
governing equations for the mean and turbulent quantities are
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The turbulent stresses pr;; (= —pww;) and turbulent heat fluxes (pe,u,f) require

modeling in order to close the equations.

For the modeling of the Revnolds stresses p7;;. within the context of an algebraic
stress formulation. transport equations for the turbulent kinetic energy and turbulent
dissipation rate are needed:
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where P, = p1,;0U;/dx; is the production term. The constants (', and (., are

set to 1.44 an(l 1.83, respectively, and the turbulent eddy viscosity is calculated as
e = pfC, = - where (', = 0.09. The functions fy, f,. and f, are damping functions
and are equz;] to unity in the fully turbulent region. In this study, the Abe-Kondoh-
Nagano (1995) formulations for fi. f,, and f, are used and are given by

bt \ 2 )2 +\2 5 )2
_ﬁ:(l—(fﬂ P+n¢m*§ﬂ], ﬁﬁ:@—q—%>[1+——lfg*%ﬁ

where

! =\ pd k2
yt == = (L) P Re =P (7)
Iz P ! 15

and d is the normal distance to the nearest wall. When the AKN model is used. the

constants o and o, are both set to 1.4, and all the remaining constant coefficients are
calibrated against the DNS channel flow data of Kim et al. (1987). At high Reynolds

numbers, or = | and o. is determined from x?/[,/C,(Cey — ()]
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The explicit algebraic stress model used is an extension of the Gatski and Speziale
(1993) model and is described in Rumsey et al. (1999). In terms of the turbulent
stress anisotropy b;;, it can be written as

i o N
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where S;; and W, are the mean strain rate and rotation rate tensors, respectively
(S;; + W, = 9U;/0x;). The a;’s are scalar coefficient functions of the invariants
n? (= 8555 = {S?}) and €2 (= Wi, = —{W?}), and are given by
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The proper choice for o is the minimum real root of Eq. (9) (Jongen and Gatski
1999).

Three different models are used to provide closure for the turbulent heat flux term.
The first is an isotropic, simple eddyv diffusivity (SED) model based on the Boussinesq
approximation,
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where the turbulent Prandtl number for temperature o7 is set to 0.89. The second is

a model based on a generalized gradient diffusion hypothesis (GGDH),

S k 0T
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and the third model is based on the WET method and is given by
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where (7, = 0.3 in both the GGDH and the WET models. At low Reynolds numbers,
a damping function for the SED model (f,) is included in the turbulent eddy viscosity
1t;, and for the GGDH and WET models, a damping function f,r is introduced. This
damping function is a Lam-Bremhorst (LB) (1981) type model which is given by
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where Rep = pVkd/p. If the same number of grid points was used in the cross
section, it was found that using the LB model in the GGDH and WET closures gave
better results than the AKN model for flows where Re > 10*. Note that the WET
model is implicit, and the resulting system of equations for the heat fluxes are solved
analytically in each iteration (no numerical inner iteration loop).

Both friction factor and Nusselt number have been obtained from the computa-
tions. The calculated friction factor is thus related to the Prandtl-law (Incropera and

DeWitt 1996) as

71_1—/ — log (Re\/ﬂ) — 0.8, (17)

The Re number is based on the hydraulic diameter defined for two or three walls as
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where «, b, h, and ¢ are base length, upper length. height, and hase angle, respectively.
The reference to two or three walls is to the number of walls in the cross section when
svmmetry conditions are used, and A .. 15 the cross-section area which can be defined
as 0.5(a + h) for all cases considered here.

The calculated Nu-number is related to the Dittus-Boelter correlation (Incropera
and DeWitt 1996) by

Nu = 0.023Re8 Py0? for  Re 2 8000 (19)

At high Reynolds numbers, the law of the wall is assumed to be valid for both
the velocity and temperature fields in the near wall region (see Rokni and Sundén
(1996, 1999a) for implementation details). While the log-law behavior is assumed
for the velocity field. the temperature field can be treated by either of two methods.
One is the usual log-law behavior. and the other is the commonly used P-function
(Jayatilleke, 1969) method. By using the latter approach, the temperature field is

given by
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where the P-function can be expressed as
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and or = 0.89. This method is very popular. especially in commercial codes; however,
two disadvantages of the method in duct flows are that the temperature field will be
directly dependent on the velocity field, and that the von Karman constant & may
play a significant roll in the determination of the Nu-number. Figure 1 clearly shows
the effect of the x value on the calculated friction factor and Nwu-number in a square
duct (using the EASM and the SED model). A question that now arises is which
value of the von Karman constant should be chosen. A value of £ = 0.403 gives the
best result for the friction factor; x = 0.46 gives the best result for the Nu-number,

b |
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Figure 1. Calculated friction factor and Nw-number compared with experimental
correlations in a square duct using EASM, SED. and two near wall treatments for
the temperature feld.

Rokni and Sundén (1996) assuined an average value of x = 0.435. In light of this
ambiguity, the former approach of assuming a log-law behavior for the temperature
field will be used here.

The numerical method is based on the finite volume technique. with a nonstag-
gered grid arrangement. The SIMPLEC algorithm is used for pressure-velocity cou-
pling. A modified SIP method is implemented for solving the equations. The QUICK
scheme is used for treating the convective terms in the momentum equation. How-
ever, to achieve stability in the & and ¢ equations, a hybrid scheme is used for the
convective terms. A further discussion of the specification and implementation of the
boundary conditions, as well as the numerical procedure used in the solution of the
mean and turbulent equations. can be found in Rokni and Sundén (1996, 1999b).

3. Results

Straight ducts with square, rectangular. and trapezoidal cross sections. and a wavy
duct are considered in this investigation. Only one quarter of the duct with square
and rectangular cross sections and only half of the duct with a trapezoidal cross
section are considered by imposing symmetry conditions. Sketches of the various
duct configurations are shown in Fig. 2. The calculations focus on fully developed,
three-dimensional, turbulent duct flow. Results of mean velocity, and friction factor
and Nwu-number distributions are presented, the latter two quantities being the most
important hydraulic parameters from an engineering standpoint. In addition, the
secondary flow generated within the ducts is also analyzed.
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3.1 Grid Sensitivity

A nonuniform grid distribution is employed in the plane perpendicular to the main
flow direction. Close to each wall, the number of grid points or control volumes are
increased to enhance the resolution and accuracy. From the duct center to each wall,
the grid distance 1s multiplied by a stretching factor (ST) less than unity. Thus, the
smaller this factor, the more grid points are concentrated near the wall (i.e., finer grid
near wall). A different number of grid points was used in the cross-sectional plane
in order to establish the accuracy of the calculations. Table 1 shows the calculated
Nu-number and friction factor in a square duct with different stretching factors and
number of grid points, when using the EASM. The calculated Nu-number (bv GGDH)
and friction factor are compared with the correlations mentioned in previous sections.
In the table, Nupp stands for Nu-number calculated from the Dittus-Boelter corre-
lation, and fp, stands for friction factor calculated from the Prandtl-law correlation.

|



As is evident from Table 1, decreasing the stretching factor (inserting more grid points
in the viscous sublayers) for a specific number of grid points increases the accuracy
of the calculations. For example, using 31 x 31 grid points with stretching factor
0.85 yields predictions as accurate as 35 x 35 number of grid points with a stretching
factor of 0.9. In this study, 31 x 31 grid points in the cross section with different
stretching factors (depending on the Re number) has been used. If wall functions

Table 1. Calculated friction factor and Nw-number for a square duct with different
numbers of grid points and stretching factors using low Reynolds version.

ST Grid Re [ x10° fp, x 10° diff %* | GGDH Nupg diff %"
0.9 21 x21 4561 10.098 9.602 -5.2 16.3 17.6 7.4
0.9 31 x31L 4588 9.981 9.586 -4.1 16.2 177 8.5
0.9 35 x35 4603  9.915 9.576 -3.5 16.2 17.8 8.9
0.9 41 x41 4615  9.364 9.569 -3.1 16.2 17.8 9.0
0.9 51 x5l 4619  9.847 9.567 -2.9 16.2 17.8 9.0
0.93 31 x 31 4549 10.154 9.610 i 16.6 17.3 4.0
0.85 31 x 31 4604 9.912 9.576 -3.5 16.3 17.8 3.4
0.35 41 x40 4607  9.900 9.574 -3.4 16.3 [7.8 8.4

“iff % = 100 x {correlated - calculated)/correlated

were used (Re > 107 based on hydraulic diameter), 21 x 21 to 31 x 31 (depending
on the Re number) grid points were sufficient to obtain reasonable accuracy for hoth
the friction factor and Nwu-number in the square ducts.

3.2 Square Duct

The square duct is the least complicated geometry to be studied here. The flow
and heat transfer results presented here show the wide range of Revnolds numbers
over which the current formulation can be successfully used.

3.2.1 Secondary Flow Patterns

In Fig. 3, the secondary flow pattern (velocity vectors) in the fully developed re-
gion of a square duct is shown at a Revnolds number near 4800. The results predicted
by the EASM (with damping functions) are in excellent qualitative agreement with
the DNS study of Mompean et al. (1996) and Gavrilakis (1992). Similar secondary
flow patterns are predicted at both the low and high Reynolds numbers considered.

As is well known, in laminar flow these secondary motions do not occur. In tur-
bulent flow. the forces driving the secondary motion are concentrated in the region
close to each corner. These motions are generated by gradients of the normal tur-
bulent stresses. However, the linear & — ¢ model (LEVM) (see e.g., Rokni, 1998)
does not correctly predict these secondary motions because of its inability to accu-
rately account for the individual normal Reynolds stresses wjw;. The LEVM yields

o
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Figure 3. Predicted secondary motion velocity vectors in a square duct for f2¢ near

4500.

the physically incorrect expression wv = v0 = ww. It is worthwhile to point out that
secondary motions are found with LEVM; however, they are extremelyv small, about
1071% to 107% of the streamwise flow. and cannot normally be detected. These
very small motions lie in the limit of numerical/computer accuracy (absolute values
of 107% — 1077). While the redistribution of the turbulent kinetic energy into the
normal components of the Reynolds stresses is important in correctly predicting the
secondary flow pattern, it is equally important that the Revnolds shear stress com-
ponent be accurately predicted. The turbulent shear stress is the essential element
i the production of the turbulent kinetic energy and as such determines the overall
turbulent energy level of the flow.

The predicted secondary velocity profile using the EASM, combined with both
the wall functions (Re = 7.1 x 10*) and damping functions (Re = 5600). is shown
in Fig. 4. (Since the velocity vectors in the low Re case are smaller than in the
high Re case, the results from the low Re case have been magnified (x10) for casier
comparison of the corresponding flow patterns.) In both Revnolds number cases.
the secondary motions consist of two counter-rotating vortices which transport high
momentum fluid towards the duct corner along the bisector and then outwards along
the walls. The difference between the two Revnolds numbers lies in the spatial extent
of the vortices within the duct.

At low Revnolds numbers, the secondary flow close to the duct center is weak,
and its influence on the streamwise flow is small; however, the secondary motions
concentrated near the duct corners are strong and their effect on the streamwise flow
is large (see F'ig. 5). Nevertheless, even with the existence of the two counter-rotating
vortices. very close to the corner, a small region of stagnant flow exists. Such a region
is an artifact of the symmetric structure of the counter-rotating vortices in the square
duct. As will be seen in the results from the more complicated duct geometries to be
analyzed. such a symmetric structure no longer exists, and the corner flow pattern
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Figure 4. Secondary motion velocity vectors predicted by the EASM with different
near-wall treatments.

is more complicated. Figure 5 shows the effect on the streamwise velocity contours
(U7 /Upu) predicted by the EASM using both the wall function and damping function
approach. As can be seen for the high Reynolds number case, using wall functions

rather than damping functions increases the predicted streamwise velocity along the
corner bisector toward the corner.
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Figure 5. Predicted streamwise velocity contours using EASM at two different
Revnolds numbers and using different near-wall treatments.

3.2.2 Hydraulic Parameters

The accurate prediction of the friction factor and Nwu-number is an important
consideration in assessing turbulent model performance. In this subsection, the results
of the computations using both wall functions and damping functions are presented.
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The calculated friction factor and Nu-number at high Reynolds numbers using
wall functions are shown in Fig. 6. The friction factor obtained from the EASM is
in excellent agreement with the Prandtl-law correlation. However, the model could
not be applied for Re numbers less than about 2.0 x 10* due to the large distance
between the wall and the nearest adjacent points.

Both the GGDH and WET methods are in excellent agreement with the Dittus-
Boelter correlation (less than 3% deviation), while the SE) method deviates some-
what more from this correlation (see Fig. 6). The GGDH and WET models could
not be applied for Re number less than about 2.0 x 10 without additional numerical
manipulations, e.g., using the results from a higher Re number as input data for the
lower Re number.

100 T T T T L l()()L
[ ] [
F E -
[ ] L e SED
I ¥ EASM 1 r —— Dittus-Boelter
—— Prandtl-Law | r A GGDH & WET
g 10p . T ok
= f ] s |
A '\'\'\4\,\; J
u‘: r 1 F
F -
| L 1

Rex 107 Rex 107

Figure 6. Calculated friction factor and Nwu-number using the EASM with the wall
functions.

One problem associated with using the wall functions is that the grid points ad-
jacent to a wall should be a certain distance away from the nearest wall. to get the
average y* value in an acceptable range (y* > 35; see Fig. 4). The problem is more
evident when the ducts are wavy and/or have trapezoidal cross sections. This prob-
lem can be alleviated by using the EASM presented here. Nevertheless, the damping
function requirement of calculating the normal distance from any point to the nearest
wall is not an easy task in general geometries.

Figure 7 shows that the calculated friction factor using the EASM is able to
captures the Prandtl-law correlation (about 5% over-predicted). The figure also shows
that the Nwu-number, obtained from the GGDH and WET methods, agrees rather
well with the Dittus-Boelter correlation. while the SED method gives less accurate
results. It should be mentioned that the GGDH and WET models underpredict the
Dittus-Boelter correlation for Re numbers less than about 8000. The experimental
work of Lowdermilk et al. (1969) also shows that the Nu-number in square ducts

11
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Figure 7. Calculated friction factor and Nu-number using the EASM and damping
functions.

underpredicts from the Dittus-Boelter equation for f2e numbers less than about 3000.

The presented calculation procedure is highly stable and can be extended to a
much higher Re number than 10* with a minimal demand on the number of grid
points. In Fig. 8, the calculations were performed with only 31 x 31 grid points
for all Revnolds numbers. No convergence problems arose even at very high Re

HOOr : — 100 . e
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Figure 8. Calculated friction factor and Nw-number using the EASM with damping

functions at high Re numbers.

numbers by using the present models. The friction factor obtained from the EASM
is over-predicted by about 5% compared to the Prandtl-law correlation, while the



predicted Nu-number by the GGDH and WET closures, agrees very well with the
Dittus-Boelter correlation.

3.3 Rectangular Ducts

Different rectangular ducts (side ratio 2.3,5, and 10) are considered. Fven in
these cases. if the GGDH and WET models are used, both the friction factor and
Nu-number predicted by the EASM agree very well with the theoretical correlations.
If the SED model is used. the Nu-number is under-predicted by about 15%. In Fig.
9, the secondary flow motion for two rectangular ducts with aspect ratios of 3 and 5
are shown. The secondary motion velocity vectors predicted by the EASM. with the

AKN damping functions in the & — ¢ equations, are in good agreement with what

has been observed in some experimental results. The existence of such secondary
flow patterns was first observed by Nikuradse during his experiment with noncircular
ducts (see Naka¢ et al., 1987).
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Figure 9. Predicted secondary motion velocity vectors in rectangular ducts with
aspect ratios 3 and 5 using EASM with damping functions.

Table 2 provides calculated friction factor. Nu-number and the center-to-bulk-
velocity ratio (U./{/y) in a rectangular duct with different aspect ratios. For a given
cross section, the U/./l/, decreases slightly with increasing Re number. which is also
evident from this table. The experimental value of {7./l/, for a rectangular duct with
aspect ratio 8 at He ~ 5800 is 1.23 (see Rokni et al.. 1998) which can be compared
with the calculation result (Table 2) 1.22 for aspect ratio 10 at Re ~ 1.572 x 10*.

~
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Table 2. Calculated friction factor and Nu-number for rectangular ducts with differ-
ent aspect ratios using EASM and GGDH.

Aspect Ratio Re x 1071 fx10° Nu U. /U,
2 0.9397 8.165 30.4 1.28
3 1.1474 7.797 35.8 1.28
5 1.3666 7.541 41.2 1.27
10 1.5717 7.401 47.3 1.22

3.4 Trapezoidal and Triangular Ducts

The velocity vectors and the corresponding mean flow contours predicted by the
EASM in a trapezoidal duct are presented in Fig. 10. As shown in the figure,
there exist two counter rotating vortices close to each corner that are similar to the
results obtained by Rokni and Sundén (1996). Only 61 x 31 grid points were used
in the cross section to perform the calculation. Since the LB damping functions
had convergence and stability problems regardless of grid arrangement in the cross
section in the trapezoidal ducts, the AKN damping functions were used. In Fig.
0. the Re number is about 1.546 x 10*, and the calculated friction factor and Nu-
number (GGDH model) are 7.791 x 1072 and 48.1. respectively. These values can be
compared with the Prandtl-law and Dittus-Boelter correlations. Fqs. (17) and (19).
which vield 6.900 x 1072 and 46.8, respectively. The center-to-bulk-velocity ratio
(U'./U7) s calculated as 1.29.

(‘lose to the upper side corner (“north wall™ and “high wall”) there exist two
counter-rotating vortices a small one and a much larger one. The smaller vortex
size decreases when decreasing the upper side length (“north wall™) until it vanishes
for a triangular duct. Correspondingly. the large vortex size increases while this length
decreases (see Fig. 11). This type of secondary flow pattern in a triangular duct was
also observed in the experiment of Nikuradse (see e.g., Kakac. 1987).

The highly stable nature of the calculation procedure used here makes it possible to
apply the present models to such triangular ducts and to predict turbulence quantities
without any convergence problems. In Fig. 11 the upper side length is much smaller
than the two other lengths (= 2 x 107% of the duct height). This length cannot be
set to zero since using structured grids in the calculations requires that no side of
auy control volume in the domain be zero. Nevertheless, this very small upper side
length would still yield the correct limiting hehavior of a sharp corner and would be
a case in which many turbulence models would fail. The Re number in this duct is
1.164 x 10*, and the predicted friction factor and Nu-number (GGDH model) are
8.016 x 107 and 36.3, respectively. These results can be compared with the Prandtl-
law and Dittus-Boelter correlations, Egs. (17) and (19), which yield 7.421 x 10~ and
37.3. respectively. The center-to-bulk-velocity ratio (I./Us) is calculated as 1.30.
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Figure 10. Velocity field in a trapezoidal duct: (a) secondary motion velocity vectors:
(b) mean velocity contours.
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Figure 11. Predicted velocity and temperature fields in a triangular duct: (a) sec-
ondary motion velocity vectors: (h)mean temperature contours.

3.5 Wavy Ducts

In light of the success with the previous geometries, an initial calculation on a wavy
duct has been done to further evaluate the performance of the model and calculation
procedure presented in this study. The wavy duct under consideration is shown in
Fig. 2. A symmetry plane is imposed at the cross section with an aspect ratio 4 to 3
and sinuous variation along the y-direction. The number of grid points in the cross
section is set to 61 x 31 for y- and z-directions. respectively. This discretization is
similar to the number and distribution of grid points used in the cross section for the
trapezoidal duct. Close to each wall, the number of grid points, or control volumes,
is increased to enhance the resolution and accuracy. Unfortunately, due to computer



capacity and time, only 30 grid points, uniformly spaced, are set in the streamwise,
or x, direction.

For convergence, the residuals reached the value 10™* for the temperature field
and 107" for the velocity field and turbulence equations. The GGDH method was
used for the temperature equation.

The restrictions on the streamwise resolution can adversely affect the performance
of the solution procedure. Such inaccuracies in the computation in some regions may
lead to large values of some key parameters which deteriorate the whole solution
field. This situation occurs here, and to obtain a converged solution, restrictions are
needed. The parameter R? is a useful parameter for characterizing the flow. For
a pure shear flow R? = 1, and for a plain strain flow R* = 0. In this study, the
value being calculated in the cross section of the straight square duct was 0.947, for
the trapezoidal duct, the value was 0.964. and for the triangular duct. the value was
0.958. This range of values suggests that the model will perform well since the EASM
was originally calibrated for homogeneous shear flows where R? = 1. In the wavy
wall case, values of R? exceeding 2 and correspondingly large values of 7 greater than
16 occur near the bend in the duct. These values yield too large values of Py /z, which
eventually destrov the solution. Jongen and Gatski (1998) correlated the behavior of
these three parameters (7.R?%, Py/s) (see their Fig. 4). and arrived at a limiting value

7elim = :t—l_\] (1_2; + 1}' <ﬁ>—l
az \ 3 g \ <

The limiting value for Ry, was £1.23. At these points P,/ can be very large.
Therefore. R{,,, = 1.513 is the limiting value used in the calculations and this restricts

the solution of the cubic equation, Eq. (9), to values of P,/ which do not lead to a

for R given by

deteriorated solution.

Table 3 shows the calculated Nu-number and friction factor for the wavy duct
in comparison with the straight trapezoidal duct. Included in the table are columns
where the calculated friction factor has been normalized by the Prandtl-law. and the
calculated Nu-number has been normalized by the Dittus-Boelter correlation. As can

Table 3. Comparison between a wavy duct and straight duct with similar cross
section.

Type Re | fx10° fp, x10® [/fp, | GGDH Nupg Nu/Nupg

Straight | 13699 | 7.466 7.115 1.05 40.4 42.5 0.95
Wavy 8944 | 17.527 7.956 2.20 43.2 30.2 1.60

be seen from Table 3, both the friction factor and the Nu-number for the wavy duct
are much higher than the straight duct.

Figure 12 shows that the secondary velocity vectors at the inlet of the duct have
changed significantly, compared to the straight duct. In addition, one can assume
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that the secondary velocity patterns have also changed significantly in the other
cross-section planes as well. The magnitude of these secondary flow patterns is about
10 times larger than the secondary flow in the straight duct with similar cross section,
or about 10% of the streamwise flow. The contours in the streamwise flow direction

2=2 (symmelry plane) North wall
Streamwise velocity

North walt

z=15 (middle plane) North walt (b)
Streamwise velocity

Symmetry Wall

1 Y
[ ISR R R

"
NNS
IEEERRANNE
[ ERENEE TR
Y \\\\\\\\"v
SN

L z South wall

z=15 (middle plane) Narth walt
Dimensioniess temp. =

South wall

Figure 12. (a) Secondary motion velocity vectors at the inlet of the wavy duct,
(b) streamwise velocity contours at symmetry and middle planes, and dimensionless
temperature contours at middle plane of wavy duct.

are also shown in Fig. 12. The duct is moderately curved, and there is a very small
recirculation zone in the streamwise symmetry plane of the duct near the north wall:
however, no such recirculation exists in the middle plane. Such patterns suggest a
complicated vortical flow field within the duct where components of vorticity in the
cross-stream and streamwise directions may simultaneously exist.

4. Summary

The results from the numerical solution of fully developed, three-dimensional tur-
bulent duct flow under isothermal conditions have been presented for square, rectan-
gular, trapezoidal, triangular, and wavy ducts. The turbulent stresses were modeled
using an EASM, and the turbulent heat fluxes were modeled by the SED, GGDH and
WET methods. At high Reynolds numnbers (210%), wall functions for the velocity and
temperature fields were used. At low Reynolds numbers, the AKN damping func-
tions were used for the turbulent equations, and for the turbulent heat fluxes (GGDH
and WET methods), Lam-Bremhorst type damping functions were used. Compar-
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isons with well-established correlations, extracted from experimental studies, showed
excellent agreement for the hydraulic parametrs (friction factor and Nu-number).
Qualitative comparisons with observed secondary flow patterns were also found to be
in excellent agreement.

The calculation procedure was found to be robust, with limited demand on the
total number of grid points to achieve the desired accuracy - thus minimizing the as-
sociated computational cost. This procedure included the very challenging triangular
duct case. where excellent results were obtained without any convergence or stability
problems. In the wavy duct with trapezoidal cross section, streamwise resolution
problems necessitated the imposition of a limiting value on the characteristic flow
parameter R. Nevertheless. with this restriction, results were obtained showing the
distinguishing features of the fullv developed wavy duct flow as well as the contrasting
behavior to the straight duct case with similar cross section.

These results suggest that while the models for the heat fluxes can be very simple,
this simplicity does not necessarily preclude an accurate prediction of the temperature
field. Under isothermal conditions, simple gradient-diffusion models for the heat
fluxes may suffice if the flow field can be well predicted. In complex geometries such
as those examined here, it is necessary to use higher-order models for the Reyvnolds
stresses. since anisotropies in the turbulent stress field are important, and simple
linear eddy viscosity models will not suffice. Higher-order closures for the heat fluxes
may also be required in nonadiabatic cases and/or in cases where counter-gradient
heat transfer occurs. Corresponding explicit algebraic heat flux models. coupled with
equations for the temperature variance and variance dissipation rate, could be applied
to such flows.
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